Commuting Varieties of Lie Algebras over Fields of Prime Characteristic
نویسندگان
چکیده
منابع مشابه
Derivations of the Odd Contact Lie Algebras in Prime Characteristic
Abstract. The underlying field is of characteristic p > 2. In this paper, we first use the method of computing the homogeneous derivations to determine the first cohomology of the so-called odd contact Lie algebra with coefficients in the even part of the generalized Witt Lie superalgebra. In particular, we give a generating set for the Lie algebra under consideration. Finally, as an applicatio...
متن کاملResonance varieties over fields of positive characteristic
Let A be a hyperplane arrangement, and k a field of arbitrary characteristic. We show that the projective degree-one resonance variety R(A, k) of A over k is ruled by lines, and identify the underlying algebraic line complex L(A, k) in the Grassmannian G(2, kn), n = |A|. L(A, k) is a union of linear line complexes corresponding to the neighborly partitions of subarrangements of A. Each linear l...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولThe Homology of Heisenberg Lie Algebras over Fields of Characteristic Two
The generating function of the Betti numbers of the Heisenberg Lie algebra over a field of characteristic 2 is calculated using discrete Morse theory. The Heisenberg Lie algebra of dimension 2n + 1, denoted by hn, is the vector space with basis B = {z, x1, . . . , xn, y1, . . . yn} where the only non-zero Lie products of basis elements are [xi, yi] = −[yi, xi] = z. In this paper the Betti numbe...
متن کاملThe Cohomology of the Heisenberg Lie Algebras over Fields of Finite Characteristic
We give explicit formulas for the cohomology of the Heisenberg Lie algebras over fields of finite characteristic. We use this to show that in characteristic two, unlike all other cases, the Betti numbers are unimodal. The Heisenberg Lie algebra is the algebra hm with basis {x1, . . . , xm, y1, . . . , ym, z} and nonzero relations [xi, yi] = z, 1 ≤ i ≤ m. The cohomology (with trivial coefficient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2002
ISSN: 0021-8693
DOI: 10.1006/jabr.2001.9083